RSA Encryption

Daniel Weibel
Created 1 Sep 2013

Mathematical foundation of the RSA asymmetrical cryptosystem.

Key Generation

  1. Choose two prime numbers \(p\) and $q$
  2. Compute $n=p q$
  3. Choose $a$ such that $\textrm{gcd}(a,\,\varphi(n))=1$
  4. Compute $b$ such that $\textrm{mod}(a b,\,\varphi(n)) = 1$
  5. Public key: $(n,\,a)$
  6. Private key: $(p,\,q,\,b)$

Encryption With Public Key

Let $(n,\,a)$ be the public key, $x$ the plain text and $y$ the ciphertext:

Decryption With Private Key

Let $(p,\,q,\,b)$ be the private key, $y$ the ciphertext, and $x$ the plain text:

Decryption With Public Key (Cracking RSA)

Let $(n,\,a)$ be the public key, $y$ the ciphertext and $x$ the plain text:

Calculating the plain text $x$ requires to calculate $\varphi(n)$, which is equivalent to calculating the prime factors $p$ and $q$ of $n$, which is an NP problem (that is, not doable for large $n$).