Algorithm

Mnemonic

"Children’s sort"

Choose an
element right of
"current”

"Hand of Cards"
sort

Choose a position
left of "current”

Generalisation of
insertion sort
(using agap > 1)

Sort left, sort right
merge the two
sorted sub-arrays

Pivot
left < pivot < right

|

Type

Iterative

[terative

Iterative

Recursive

Recursion levels:
log n

Recursive

Recursion levels:
log n (best) to n (worst)
(with opt. log n worst)

Memory

In-place

In-place

In-place

Requires copy of
input array

O(n) space

In-place

But recursive,
therefore O(log n)
space

Advantages

Only n exchanges in the

worst case, which is
less than most other
algorithms

Linear time O(n) if input
is already sorted

One of the fastest
algorithms for partially
sorted arrays

Asymptotically optimal,
l.e. worst-case time
complexity is O(n log n)

Optimal O(n log n) time
in average case

In practice, most of the
time faster than any
other algorithm

Disadvantages

Description

* Find smallest item and
put it in first position

* Find next-smallest item
and put it in second
position, etc.

lterate through array and
push each item to the left as
long as it is smaller than its
left neighbour

1. Sort left half of array

2. Sort right half of array

3. Merge the two sorted
sub-arrays

1. Partition array around

pivot

2. Sort sub-array left of
pivot

3. Sort sub-array right of
pivot

1. P

1. P

Time
Complexity

Best
O(n"2)

Avg
O(n"2)
O(n"2)

O(n)

O(n"2)

O(n"2)

Space
Complexity

o(1)

O(1)

O(1)

O(n)

O(log n)

O(1)

o(1)




